En
1838, Scheleiden y Schann establecieron que todos los organismos,
tanto animales como vegetales, no son otra cosa que un ensamblaje de
células. Esta observación, realizada con la ayuda de un
microscopio, fue el punto de partida para que lo que se conoce como
teoría
celular.
Esta
teoría se asentó hace más de siglo y medio, como el principio
fundamental de la biología moderna, puede resumirse en cuatro
proposiciones:
1· Todos
los organismos están compuestos por una o más células.
Es
decir la célula es la unidad anatómica de la materia viva, y una
célula puede ser suficiente para constituir un organismo.
2·
Las
reacciones químicas de un organismo vivo, incluidos los procesos que
liberan energía y las reacciones biosintéticas ocurren dentro de
las células.
Es
decir la célula es la unidad funcional de los seres vivos, en las
células tienen lugar las reacciones metabólicas del organismo.
Las
funciones vitales de los organismos ocurren dentro de las células, o
en su entorno inmediato, controladas por sustancias que ellas
secretan.
Cada
célula es un sistema abierto, que intercambia materia y energía con
su medio. En una célula caben todas las funciones vitales, de manera
que basta una célula para tener un ser vivo (que será un ser vivo
unicelular). Así pues, la célula es la unidad fisiológica de la
vida.
3·
Todas
las células derivan de otras células.
Es
decir las células se originan de otras células preexistentes, por
división de ésta.
4·
Las
células contienen la información hereditaria de los organismos de
los cuales son parte y pasa de las células progenitoras a las
células hijas.
Cada
célula contiene toda la información hereditaria necesaria para el
control de su propio ciclo y del desarrollo y el funcionamiento de un
organismo de su especie, así como para la transmisión de esa
información a la siguiente generación celular. Así que la célula
también es la unidad genética.
Todos
los organismos conocidos, desde una ameba (protozoo) a un alece o un
elefante, siguen y cumplen los postulados de la teoría
celular.
¿Cómo evoluciona de la célula?
Se
cree que todas las células presentes en la actualidad derivan de un
ancestro común por el proceso de evolución, el cual involucra dos
procesos esenciales que son la variación al azar en la información
genética que pasa de un individuo a sus descendientes y la selección
de la mejor información genética que favorece la supervivencia y
perpetuación en el tiempo.
No
existe acuerdo en torno a cuáles eran las condiciones imperantes en
la Tierra hace billones de años, más bien parece haber acuerdo en
torno a un ambiente inestable dado por tormentas eléctricas, lluvias
y erupciones volcánicas.
El
oxígeno y el ozono eran escasos, por lo tanto no había filtro
contra la radiación ultravioleta. Estas condiciones, reproducidas en
forma experimental, favorecen la formación de compuestos orgánicos
sencilllos a partir de gases como CO2, metano (CH4), amoniaco ( NH3)
e hidrógeno (H2).
Dentro de los compuestos generales están
aminoácidos, nucleicos, azúcares y ácidos grasos. A partir de cada
una de estas moléculas se pueden sintetizar polímeros como los
polipéptidos y polinucleótidos que son hoy proteínas y ácidos
nucleicos respectivamente.
Para
estudiar cómo funciona un organismo humano, primero es necesario
saber cómo está formado.
Las
células son las unidades estructurales básicas del organismo. Hay
muchos tipos de células, cada uno de ellos con su tamaño y forma
características.
- Nivel Celular
- Nivel Tejido
- Nivel Sistemas
NIVEL CELULAR
I
Diferentes
tipos de células: Diversidad
Aunque
todos los seres vivos están compuestos por células, éstas no son
iguales, pueden presentar diversidad en forma, tamaño y organización
interna.
Si
consideramos el tamaño.
La
bacteria Treponema pallidum tiene unos cuantos micrómetros, al
compararla con el huevo de rana de 1 mm un diámetro, esta aparece
enorme a su lado.
Si
consideramos la forma.
Hay
diferentes tipos de células y su forma varía de acuerdo a la
función que realizan.
La
forma de la célula puede depender:
a)
Su ambiente inmediato:
b)
Función que desempeñan:
c)
Requirimientos químicos:
a)
Su ambiente inmediato:
Los
glóbulos blancos de la sangre que están en un ambiente líquido son
células esféricas; igual forma tienen los huevos (células) de
algunos animales acuáticos como los peces o que depositan sus huevos
en el agua como los sapos.
La
yema del huevo de un ave es una célula esférica sumergida en un
líquido gelatinoso conocido con el nombre de "clara".
Las
células libres y aisladas adoptan generalmente forma esférica, hay
células aisladas que tienen formas curiosas, por ejemplo algunas
Diatomeas y Acetabularias (algas).
En
general, las células que viven en estrecha vecindad con otras,
tienen formas poliédricas, ya que para aprovechar el espacio los
límites celulares se aplanan.
b)
Función que desempeñan:
Los
glóbulos rojos de la sangre del hombre se parecen a un plato, lo que
facilita el transporte de Oxígeno. Las células nerviosas tienen
largas y delgadas prolongaciones para transmitir mensajes entre zonas
alejadas del cuerpo.
Las
células que revisten las paredes de órganos para protegerlos,
tienen forma aplanada, como ocurre con las células de la pared de la
boca o de la superficie de las hojas.
Si
el largo de una célula supera mucho el alto y el ancho, la célula
recibe el nombre de FIBRA. Las células musculares son fibras; los
hilos blancos y sedosos que envuelven la semilla del algodón o del
palo borracho son fibras de alrededor de 2 cm. de longitud.
c) Requirimientos
químico
Hay
células que en presencia de oxígeno mueren y otras no pueden vivir
sin su presencia. Algunas células requieren para mantenerse y
prosperar sólo agua, luz, aire y minerales básicos, en cambio otras
necesitan una mezcla compleja de moléculas producidas por otras
células.
. Si
consideramos por su organización interna
Existe
un grupo de células que carecen de núcleo denominadas células
procariotes y otro grupo de células que poseen su material genético
denominadas células eucariontes.
Las
células procarióticas,
representadas por las bacterias, rickettsias y micoplasmas.
Las
células eucarióticas, que
están representadas por las células animales y vegetales.
NIVEL TEJIDO
II
Organización del organismo humano
Los
componentes básicos del cuerpo son las células, que se agrupan
formando tejidos. Los principales tipos de tejidos son:
Tejido
conjuntivo.
Tejido epitelial
Tejido linfoide
Tejido
nervioso
Tejido muscular
Tejido sanguíneo.
Cada
uno con sus propias características:
Los
tejidos conjuntivos disponen de un número relativamente reducido
de células inmersas en una matriz extracelular extensa.
En
el músculo liso tiene
una abundante matriz acelular.
El
tejido nervioso contiene
neuronas (de las que existen diferentes tipos) y células gliales.
NIVEL SISTEMAS
Sistema
cardiovascular
Las
células de los grandes animales multicelulares no pueden obtener
directamente directamente el oxígeno y los nutrientes que necesitan
a partir del medio externo.
El
oxígeno y los nutrientes deben ser transportados hasta las células.
Ésta es una de las principales funciones de la sangre, que circula
dentro de los vasos sanguíneos gracias a la acción de bombeo que
realiza el corazón.
El
corazón, los vasos sanguíneos y los tejidos asociados forman el
sistema cardiovascular.
El
corazón está constituido por cuatro cámaras, dos aurículas y dos
ventrículos, que forman un par de mecanismos de bombeo dispuestos en
paralelo.
El
ventrículo derecho envía la sangre desoxigenada a los pulmones en
donde absorbe el oxígeno del aire, mientras que el ventrículo
izquierdo bombea la sangre oxigenada que vuelve de los pulmones hacia
el resto del organismo para el aporte de oxígeno a los tejidos.
Sistema
respiratorio
La
energía necesaria para llevar a cabo las diversas actividades del
organismo procede, en último término, de la respiración. Este
proceso incluye la oxidación de los alimentos (principalmente
azúcares y grasas) con la finalidad de liberar la energía que
contienen.
Los
pulmones incorporan el oxígeno necesario para este proceso a partir
del aire, y la sangre lo transporta hasta los tejidos.
El
dióxido de carbono producido como consecuencia de la actividad
respiratoria de los tejidos es transportado hasta los pulmones a
través de la sangre venosa, y eliminado a través del aire espirado.
Las
preguntas básicas a las que hay que responder son: ¿Cómo entra y
sale el aire de los pulmones? ¿Cómo se ajusta el volumen de aire
respirado a las necesidades del organismo?, ¿Cuáles son los límites
de la captación de oxígeno en los pulmones?
Sistema
digestivo
Los
nutrientes que el organismo necesita provienen de la dieta. Las
enzimas del tractointestinal degradan los alimentos ingeridos a
través de la boca en sus diferentes componentes.
Los
productos de la digestión son absorbidos por la sangre a través de
la pared del intestino y alcanzan el hígado a través de la vena
porta.
Gracias
al hígado, los tejidos pueden asimilar los nutrientes y usarlos para
su crecimiento y reparación, así como para la producción de
energía.
En
el caso del sistema digestivo, las preguntas claves son: ¿Cómo se
ingieren los alimentos?, ¿cómo se hidrolizan y se digieren los
alimentos? ¿Cómo se absorben los nutrientes individuales?,¿cómo
se moviliza el alimento a través del tracto gastrointestinal?, y
¿cómo son eliminados del organismo los residuos que no se digieren?
Riñones
y tracto urinario
La
función principal de los riñones es el control de la composición
del líquido extracelular (el líquido que baña las células). En el
curso de este proceso, los riñones también eliminan productos de
desechos no volátiles producen orina de composición variables que
queda almacenada temporalmente en la vejiga antes de la micción.
Las
preguntas claves son: ¿Cómo regulan los riñones la composición de
la sangre?, ¿cuáles son los mecanismos que permiten el
almacenamiento y la eliminación de la orina?
Sistema
reproductor
La
reproducción es una de las características fundamentales de los
organismos vivos. Las gónadas (los testículos en el varón y los
ovarios en la mujer) producen células sexuales especializadas,
conocidas como gametos.
La
función básica de la reproducción sexual es la creación y fusión
de los gametos masculino y femenino, el espermatozoide y el óvulo,
combinándose así las características genéticas de los dos
individuos progenitores; de esta combinación surge un ser que
difiere genéticamente de sus padres.
Los
aspectos fundamentales son: ¿Cómo se producen los espermatozoides y
los óvulos?, ¿Cómo crece y se desarrolla el embrión?, y ¿Cómo
se nutre el embrión hasta que puede hacerlo por sí mismo?
Sistema
musculoesquelético.
Está
formado por los huesos del esqueleto, los músculos esqueléticos y
sus tejidos asociados. Su función principal es proporcionar la
capacidad de movimiento necesaria para la locomoción, para el
mantenimiento de la postura y para la respiración.
También
proporciona soporte físico para los órganos internos. En este caso,
el aspecto clave es el mecanismo de la contracción muscular.
Sistema
endocrino y nervioso
Las
actividades de los diferentes sistemas orgánicos han de coordinarse
y regularse de modo que actúen al unísono para satisfacer las
necesidades del organismo.
Han
evolucionado dos sistemas de coordinación: el nervioso y el
endocrino. Para poder transmitir la información con rapidez a
células específicas, el sistema nervioso utiliza señales
eléctricas. Así, los nervios transmiten estas señales a los
músculos esqueléticos para controlar su contracción.
El
sistema endocrino, por otro lado, secreta agentes químicos. Las
hormonas, que viajan por el torrente circulatorio hasta las células
sobre las que ejercen un efecto regulador. Las hormonas desempeñan
un importante papel en la regulación de muchos órganos, y
especialmente en la del ciclo mestrual y otros aspectos de la
producción.